Screening von Publikationen mittels künstlicher Intelligenz: wie valide sind KI-extrahierte Studiendaten?

Simone Eisenhofer¹, Sindy Barke-Burjanko¹

1 Klinische Pharmazie, AMTS und E-Health, EKK plus GmbH, Deutschland; pharma-info@gdekk.de

Hintergrund

- Tools, die künstliche Intelligenz (KI) nutzen, bieten diverse Möglichkeiten Medizin & Pharmazie im klinischen Alltag zu unterstützen [1]
- Ihre Verwendung unterliegt **Hürden** und **Grenzen**, wodurch die **strukturierte Exploration** der Nutzung von KI in Medizin & Pharmazie an Relevanz gewinnt [2,3]
- Ziel: Analyse der Validität von Studiendaten, die durch ein KI-Tool aus wissenschaftlichen Publikationen extrahiert wurden

Ergebnisse

- Analyse von 37
 Publikationen (Tab. 1)
- 4 Parameter mit Übereinstimmungsrate > 90 %

Mediane Übereinstimmungsrate: 89 %

Q25; Q75: 81 %; 92 % Min; Max: 76 %; 97 %

Tabelle 1 Übereinstimmungsraten der analysierten Parameter

		Überein- stimmungsrate
	Jahr der Publikation	92 %
Charakteristika der Publikation	Studienart	92 %
	Titel	89 %
	Erstautor*in	84 %
Charakteristika der Methodik BMI/k	Untersuchte Indikation	97 %
	Studienpopulation (n)	89 %
	Untersuchte Wirkstoffe	86 %
	KG der Studienpopulation	81 %
	Untersuchte Dosierung	78 %
Charakteristika	Target Erreicht	89 %
der Ergebnisse:	Target Überschritten	89 %
Anti-Xa-Level	Target Unterschritten	81 %
Charakteristika	Anzahl der VTE	97 %
der Ergebnisse:	Anzahl der Blutungen	81 %
UAW So	hw <mark>eregrad</mark> der Blutungen	76 %

BMI: Body-Mass-Index; KG: Körpergewicht; UAW: unerwünschte Arzneimittelereignisse; VTE: thrombovenöse Ereignisse

Diskussion

- KI-Tools können eine wertvolle
 Unterstützung bei der Extraktion
 von Studiendaten aus
 wissenschaftlichen
 Publikationen darstellen
- Die **fachliche Überprüfung** durch Gesundheitsberufe, ist **unerlässlich**

z.B. pharmazeutische Arzneimittelinformation

Expert*innen der

Methoden

Datengrundlage:

- Wissenschaftliche Publikationen zum Thema Dosierung von niedermolekularen Heparinen und Fondaparinux bei adipösen Patient*innen
- Manuell zusammengefasst durch eine Klinische Apothekerin

• Datenextratktion:

- KI-Tool: scienceOS# (April 2025)
- Extraktion von 15 Parametern (Tab. 1) mittels eines spezialisierten Prompts (Abb. 1)
- Parameter "untersuchte Indikation" vordefiniert in VTE-Therapie" bzw. "VTE-Prophylaxe"

• Datenabgleich:

 Gegenüberstellung der manuell von einer Klinischen Apothekerin zusammengefassten und der KI-extrahierten Daten

Ermittlung der Übereinstimmungsrate

Role

You are a researcher looking for data in publications. Do not comment your actions.

Instruction

Follow these steps carefully:

1) Retrieve the following data of the last uploaded PDF: title of the publication, first author of the publication, year the publication was published, study type of the publication, active agents or active agents analyzed in the trial, indication (VTE treatment and/or VTE prophylaxis), number of participants of the trial, weight and/or BMI (body mass index) of the participants, dosing regime or dosing regimes used in the study, number/percentage of patients reaching Anti-Xa-Factor target level, number/percentage of patients below Anti-Xa-Factor target level, number and/or frequency of bleeding/haemorrhagic events, severity of bleeding/haemorrhagic events, number and/or frequency of VTE events.

2) Do not change the data. Do not add any comments. If you can not

find data, do not create data but add "data not found".

Abbildung 1

Prompt zur Extraktion der Studiendaten

Literatur

[1] Singh K, Prabhu A, Kaur N. The Impact and Role of Artificial Intelligence (AI) in Healthcare: Systematic Review. Curr Top Med Chem. Published online March 3, 2025.

[2] Morath B, Chiriac U, Jaszkowski E, et al. Performance and risks of ChatGPT used in drug information: an exploratory real-world analysis. Eur J Hosp Pharm. 2024;31(6):491-497.

[3] Budzyń K, Romańczyk M, Kitala D, et al. Endoscopist deskilling risk after exposure to artificial intelligence in colonoscopy: a multicentre, observational study. Lancet Gastroenterol Hepatol. 2025;10(10):896-903.

scienceOS UG, Dresden